Steganalysis with Deep Learning on Medical Images
نویسندگان
چکیده
Steganaliz ile bir medya dosyasındaki gizli mesajı elde etmek ya da sadece mesajın varlığını tespit amaçlanır. Literatürde medikal verilerin güvenliğini sağlamayı amaçlayan pek çok steganografi yöntemi mevcut olsa steganaliz çalışması azdır. Bu çalışmada, görüntü yöntemlerinin dayanıklılığının arttırılmasında kullanılabilecek ve görüntüde mesajların edebilecek sınıflandırıcı geliştirilmesi amaçlanmıştır. Bunun için karmaşık maliyetli öznitelik analizine gerek duymayan derin öğrenme mimarisi olan evrişimsel sinir ağı(ESA) taşıyıcı stego görüntüler eğitilmiş test edilmiştir. Doğruluk, kesinlik, hassasiyet F1 değerleri sırasıyla 0,964, 0,966, 0965 0964 olarak çalışma, yönteminin steganalizinde de kullanılabileceğini ilk kez göstermiştir.
منابع مشابه
Deep Similarity Learning for Multimodal Medical Images
An effective similarity measure for multi-modal images is crucial for medical image fusion in many clinical applications. The underlining correlation across modalities is usually too complex to be modelled by intensity-based statistical metrics. Therefore, approaches of learning a similarity metric are proposed in recent years. In this work, we propose a novel deep similarity learning method th...
متن کاملConcept Detection on Medical Images using Deep Residual Learning Network
Medical images are often used in clinical diagnosis. However, interpreting the insights gained from them is often a time-consuming task even for experts. For this reason, there is a need for methods that can automatically approximate the mapping from medical images to condensed textual descriptions. For identifying the presence of relevant biomedical concepts in medical images for the ImageCLEF...
متن کاملDeep Transfer Learning for Modality Classification of Medical Images
Medical images are valuable for clinical diagnosis and decision making. Image modality is an important primary step, as it is capable of aiding clinicians to access required medical image in retrieval systems. Traditional methods of modality classification are dependent on the choice of hand-crafted features and demand a clear awareness of prior domain knowledge. The feature learning approach m...
متن کاملUnderstanding the Mechanisms of Deep Transfer Learning for Medical Images
The ability to automatically learn task specific feature representations has led to a huge success of deep learning methods. When large training data is scarce, such as in medical imaging problems, transfer learning has been very effective. In this paper, we systematically investigate the process of transferring a Convolutional Neural Network, trained on ImageNet images to perform image classif...
متن کاملOil spill detection using in Sentinel-1 satellite images based on Deep learning concepts
Awareness of the marine area is very important for crisis management in the event of an accident. Oil spills are one of the main threats to the marine and coastal environments and seriously affect the marine ecosystem and cause political and environmental concerns because it seriously affects the fragile marine and coastal ecosystem. The rate of discharge of pollutants and its related effects o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: INTERNATIONAL JOURNAL OF INFORMATICS TECHNOLOGIES
سال: 2021
ISSN: ['1307-9697', '2147-0715']
DOI: https://doi.org/10.17671/gazibtd.799370